
Supplementary material for:
Explaining through Transformer Input Sampling

1. Transformer Input Sampling Parameters

Using the quantitative experiments described in the pa-
per for faithfulness metrics, we compared the main param-
eters of TIS: the number of tokens sampled and the num-
ber of masks. We first compared token masking ratios of
0.5, 0.25, and 0.125, respectively corresponding to 98, 49,
and 24 sampled tokens (nk) out of 196 tokens using 2048
masks. The results can be seen in Table 1 and 2 for the
faithfulness metrics, showing that the ratio of 0.5 performs
best for TIS. We then explored the impact of the reduction
of the number of masks (Nm) using the best ratio (0.5) on
the faithfulness metrics with 2048, 1024, 512, 256, and 128
masks. The results are in Table 3 and 4 for the faithful-
ness metrics, and Table 5 shows the results for the Pointing
Game metric. For faithfulness and localization (Pointing
Game), the higher the number of masks, the better the met-
rics. However, decreasing the number of masks still pro-
vides good results on the metrics, even with as low as 128
masks. It is therefore a tradeoff between speed and quality,
the choice being left to the user.

2. Inference Time

We conducted an analysis of the mean inference time for
explainability methods applied to the 2000 test images of
the ILSVRC2012 dataset using the ViT model, as shown in
Tab. 6. Overall, perturbation-based methods are slower due
to the computation and prediction of mask-based images
they employ, compared to methods that use gradients or
relevance to obtain saliency maps. This characteristic is not
new in the state-of-the-art literature.

However, we found that TIS can yield comparable in-
ference time results to gradient-based methods when using
as few as 128 masks. Additionally, TIS demonstrates only
a slight degradation in performance, as indicated in Fig-
ure 3 and Figure 4. In Tab. 7, we present the inference time
while varying TIS hyperparameters: the number of masks
and the token ratio. The results demonstrate that TIS can be
employed with inference times superior to many gradient-
based methods (except for Rollout and Chefer2) when the
token ratio is reduced to 0.125 with 128 masks.

3. Sparseness metric

The Sparseness metric gives a theoretical score of 1 for
a saliency map with an infinite number of pixels of which
only one differs from 0 and conversely gives a score of 0 if
all pixels of a map have the same value. Overall, we con-
sider Sparseness as an additional indicator to compare met-
rics using another property, and not as a ranking to follow
to find the best method, as obtaining 0 or 1 is not desirable
for a saliency map.

The results are shown in Table 8. Most of the methods
have close sparseness scores (range of 0.2 - 0.3) and TIS
is on the high end of this range, highlighting slightly more
pixels than the other methods. At the top of the list are
Attention Rollout and Chefer1 with much narrower areas
highlighted (range of 0.45 - 0.6 sparseness). At the bottom
of the list, we find Integrated Gradients being very close to
a score of 0.

4. Additional Visual Comparisons

In order to present visual results in a broader scope, we
display in this Section additional visualization maps of our
proposed TIS method (Figures 2 and 3), along with an ad-
ditional class disagreement visualization (Figure 1).

In Figures 2 and 3, more complete comparisons with
ViT-CX [12], the Transition Attention Maps (TAM) [13],
the two methods from Chefer [3, 4], Attention rollout [1],
the token (BT-T) and head (BT-H) methods from Bidirec-
tional Transformers [5], RISE [7], Integrated Gradient [10]
and SmoothGrad [9]. We randomly sampled 12 images
from the subset of images used in our paper, displaying the
visualization maps in Figure 2 and Figure 3 for ViT [6] and
DeiT [11], respectively. Figure 1 illustrates an additional
class disagreement, showcasing the disparity between the
target and predicted classes using TiS on ViT applied to a
snake image. This demonstration emphasizes that the dis-
agreement presented in the main paper was not an isolated
case.

1The best result is in bold.



Insertion ↑ Deletion ↓ Insertion - Deletion ↑
Token ratio Model Mean Blur Black Rand Mean Blur Black Rand Mean Blur Black Rand

0.125 ViT 0.44 0.61 0.42 0.40 0.15 0.43 0.15 0.14 0.29 0.18 0.28 0.26
0.25 ViT 0.47 0.62 0.46 0.43 0.14 0.43 0.14 0.13 0.33 0.19 0.32 0.30
0.5 ViT 0.53 0.67 0.51 0.48 0.10 0.38 0.09 0.09 0.43 0.29 0.41 0.39

Table 1: Results of Insertion and Deletion metrics and their difference on 5000 images from the ImageNet Validation set [8]
using TIS for the ViT-Base model [6] with different ratios of tokens and 2048 masks 1

Insertion ↑ Deletion ↓ Insertion - Deletion ↑
Token ratio Model Mean Blur Black Rand Mean Blur Black Rand Mean Blur Black Rand

0.125 DeiT 0.56 0.62 0.56 0.53 0.18 0.43 0.18 0.16 0.38 0.18 0.38 0.38
0.25 DeiT 0.55 0.62 0.55 0.52 0.20 0.44 0.20 0.17 0.35 0.18 0.35 0.35
0.5 DeiT 0.58 0.65 0.58 0.55 0.15 0.39 0.15 0.14 0.43 0.26 0.42 0.41

Table 2: Results of Insertion and Deletion metrics and their difference on 5000 images from the ImageNet Validation set [8]
using TIS for the DeiT-Base [11] model with different ratios of tokens and 2048 masks 1
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Insertion ↑ Deletion ↓ Insertion - Deletion ↑
Masks Model Mean Blur Black Rand Mean Blur Black Rand Mean Blur Black Rand
2048 ViT 0.53 0.67 0.51 0.48 0.10 0.38 0.09 0.09 0.43 0.29 0.41 0.39
1024 ViT 0.52 0.66 0.50 0.47 0.10 0.39 0.10 0.09 0.42 0.28 0.40 0.38
512 ViT 0.51 0.66 0.49 0.47 0.10 0.39 0.10 0.09 0.41 0.27 0.39 0.37
256 ViT 0.50 0.65 0.48 0.46 0.10 0.40 0.10 0.09 0.40 0.25 0.38 0.36
128 ViT 0.49 0.64 0.48 0.45 0.11 0.40 0.11 0.10 0.39 0.24 0.37 0.35

Table 3: Results of Insertion and Deletion metrics and their difference on 5000 images from the ImageNet Validation set [8]
using TIS for the ViT-Base model [6] with a token ratio of 0.5 and different numbers of masks 1

Insertion ↑ Deletion ↓ Insertion - Deletion ↑
Masks Model Mean Blur Black Rand Mean Blur Black Rand Mean Blur Black Rand
2048 DeiT 0.58 0.65 0.58 0.55 0.15 0.39 0.15 0.14 0.43 0.26 0.42 0.41
1024 DeiT 0.57 0.65 0.57 0.54 0.15 0.40 0.15 0.14 0.42 0.25 0.42 0.41
512 DeiT 0.57 0.64 0.57 0.54 0.15 0.40 0.15 0.14 0.41 0.24 0.41 0.40
256 DeiT 0.56 0.63 0.56 0.53 0.16 0.41 0.16 0.14 0.40 0.23 0.40 0.39
128 DeiT 0.55 0.63 0.55 0.52 0.16 0.41 0.16 0.14 0.39 0.22 0.39 0.38

Table 4: Results of Insertion and Deletion metrics and their difference on 5000 images from the ImageNet Validation set [8]
using TIS for the DeiT-Base [11] model with a token ratio of 0.5 and different numbers of masks 1

Token ratio Masks DeiT ViT
0.125 2048 0.745 0.573
0.25 2048 0.732 0.684
0.5 2048 0.829 0.824
0.5 1024 0.825 0.823
0.5 512 0.820 0.818
0.5 256 0.813 0.800
0.5 128 0.807 0.784

Table 5: Results of the Pointing Game metric [14] for the
ViT [6] and DeiT [11] model with different parameters of
TIS [11] 1

Method Inference (s)
ViT-CX 0.81

TAM 0.61
TiS 0.5 128 0.69
TiS 0.5 256 1.01
TiS 0.5 512 1.07

TiS 0.5 1024 2.05
TiS 0.5 2048 3.98

Chefer1 0.2
Chefer2 0.05

Att. Rollout 0.06
BT H 0.59
BT T 0.63
RISE 15.42

IntegratedGrad 0.52
SmoothGrad 0.54

Table 6: Mean inference time of the explainability methods
applied to the 2000 test images for the ViT model using an
NVIDIA GeForce RTX 3070.



(a) Original image (b) target: “hognose snake” 0.008 (c) “night snake” 0.556 (d) “horned viper” 0.100

Figure 1: Maps generated by TIS on ViT using the target class and the two higher predicted classes. In a minority of cases, a
mismatch between the predicted classes and a low certainty target class leads to a negative saliency map for the target class.
In this example, the model gives a certainty of 0.008 “hognose snake”, the target class of snake breed. In comparison, the
TIS result for the breeds predicted with higher confidence are well formed, we can see that the head is the main element in
this image

Token
ratio 0.125 0.25 0.5

Masks
128 0.31 0.42 0.69
256 0.40 0.61 1.01
512 0.41 0.62 1.07
1024 0.71 1.13 2.05
2048 1.31 2.24 3.98

Table 7: Mean inference time (in seconds) of TiS depend-
ing on the number of masks and the token ratio, applied to
the 2000 test images for the ViT model using an NVIDIA
GeForce RTX 3070.

Method DeiT ViT
TIS (ours) 0.296 0.311
ViT-CX 0.256 0.256
TAM 0.335 0.320
Chefer1 0.457 0.585
Chefer2 0.312 0.334
Attention Rollout 0.565 0.496
BT H 0.344 0.366
BT T 0.353 0.395
RISE 0.309 0.317
Integrated Gradient 0.015 0.028
SmoothGrad 0.301 0.314

Table 8: Results of the Sparseness metric [2] for the ViT [6]
and DeiT model [11]. We consider Sparseness as an indica-
tive metric and not as a ranking to be achieved, as obtaining
0 or 1 is not desirable for a saliency map.



Figure 2: Comparison of the explainability methods for the ViT-Base model [6] on 12 random images from the ImageNet
Validation set [8]



Figure 3: Comparison of the explainability method for the DeiT-Base model [11] on 12 random images from the ImageNet
Validation set [8]


